Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties.

نویسندگان

  • Hannu-Pekka Komsa
  • Arkady V Krasheninnikov
چکیده

Using density-functional theory calculations, we study the stability and electronic properties of single layers of mixed transition metal dichalcogenides (TMDs), such as MoS2xSe2(1-x), which can be referred to as two-dimensional (2D) random alloys. We demonstrate that mixed MoS2/MoSe2/MoTe2 compounds are thermodynamically stable at room temperature, so that such materials can be manufactured using chemical-vapor deposition technique or exfoliated from the bulk mixed materials. By applying the effective band structure approach, we further study the electronic structure of the mixed 2D compounds and show that general features of the band structures are similar to those of their binary constituents. The direct gap in these materials can continuously be tuned, pointing toward possible applications of 2D TMD alloys in photonics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying.

Binary alloys present a promising venue for band gap engineering and tuning of other mechanical and electronic properties of materials. Here we use the density-functional theory and cluster expansion to investigate the thermodynamic stability and electronic properties of 2D transition metal dichalcogenide (TMD) binary alloys. We find that mixing electron-accepting or electron-donating transitio...

متن کامل

On the Stability and Electronic Structure of Transition-Metal Dichalcogenide Monolayer Alloys Mo1-xXxS2-ySey with X = W, Nb

Layered transition-metal dichalcogenides have extraordinary electronic properties, which can be easily modified by various means. Here, we have investigated how the stability and electronic structure of MoS2 monolayers is influenced by alloying, i.e., by substitution of the transition metal Mo by W and Nb and of the chalcogen S by Se. While W and Se incorporate into the MoS2 matrix homogeneousl...

متن کامل

Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications.

Engineering electronic structure of atomically thin two-dimensional (2D) materials is of great importance to their potential applications. In comparison to numerous other approaches, such as strain and chemical functionization, alloying can continuously tune the band gaps in a wide energy range. Atomically thin 2D alloys have been prepared and studied recently due to their potential use in elec...

متن کامل

Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides

Articles you may be interested in Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study Electronic and thermoelectric properties of few-layer transition metal dichalcogenides Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel Band alignment ...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 3 23  شماره 

صفحات  -

تاریخ انتشار 2012